Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol Methods ; 317: 114733, 2023 07.
Article in English | MEDLINE | ID: covidwho-2301825

ABSTRACT

ß-Propiolactone (BPL) is an organic compound widely used as an inactivating agent in vaccine development and production, for example for SARS-CoV, SARS-CoV-2 and Influenza viruses. Inactivation of pathogens by BPL is based on an irreversible alkylation of nucleic acids but also on acetylation and cross-linking between proteins, DNA or RNA. However, the protocols for BPL inactivation of viruses vary widely. Handling of infectious, enriched SARS-CoV-2 specimens and diagnostic samples from COVID-19 patients is recommended in biosafety level (BSL)- 3 or BSL-2 laboratories, respectively. We validated BPL inactivation of SARS-CoV-2 in saliva samples with the objective to use saliva from COVID-19 patients for training of scent dogs for the detection of SARS-CoV-2 positive individuals. Therefore, saliva samples and cell culture medium buffered with NaHCO3 (pH 8.3) were comparatively spiked with SARS-CoV-2 and inactivated with 0.1 % BPL for 1 h (h) or 71 h ( ± 1 h) at 2-8 °C, followed by hydrolysis of BPL at 37 °C for 1 or 2 h, converting BPL into non-toxic beta-hydroxy-propionic acid. SARS-CoV-2 inactivation was demonstrated by a titre reduction of up to 10^4 TCID50/ml in the spiked samples for both inactivation periods using virus titration and virus isolation, respectively. The validated method was confirmed by successful inactivation of pathogens in saliva samples from COVID-19 patients. Furthermore, we reviewed the currently available literature on SARS-CoV-2 inactivation by BPL. Accordingly, BPL-inactivated, hydrolysed samples can be handled in a non-laboratory setting. Furthermore, our BPL inactivation protocols can be adapted to validation experiments with other pathogens.


Subject(s)
COVID-19 , Viruses , Dogs , Animals , Propiolactone , Saliva , Odorants , COVID-19/diagnosis , Virus Inactivation , SARS-CoV-2
2.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: covidwho-2232054

ABSTRACT

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Vaccines, Inactivated , COVID-19/prevention & control , COVID-19 Serotherapy , COVID-19 Vaccines , Pandemics , Propiolactone/pharmacology , SARS-CoV-2 , Formaldehyde
3.
Viruses ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: covidwho-2006233

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and ß-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel ß-sheet, parallel ß-sheet, ß-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Formaldehyde , Humans , Propiolactone/pharmacology , Vaccines, Inactivated
4.
Virus Res ; 305: 198555, 2021 11.
Article in English | MEDLINE | ID: covidwho-1412516

ABSTRACT

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , Propiolactone/pharmacology , SARS-CoV-2/drug effects , Virion/drug effects , Virus Inactivation/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Flocculation/drug effects , Humans , Immune Sera/chemistry , RNA, Viral/chemistry , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Inactivated , Vero Cells , Virion/chemistry , Virion/immunology
5.
JAMA ; 324(10): 951-960, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-911581

ABSTRACT

Importance: A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. Objective: To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. Interventions: In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 µg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 µg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). Design, Setting, and Participants: Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. Main Outcomes and Measures: The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. Conclusions and Relevance: In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000031809.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/adverse effects , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Dose-Response Relationship, Immunologic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Pneumonia, Viral/immunology , Propiolactone , SARS-CoV-2 , Vaccines, Inactivated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
6.
J Virol Methods ; 287: 113996, 2021 01.
Article in English | MEDLINE | ID: covidwho-894099

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome - coronavirus-2 (SARS-CoV-2) continues to affect many countries and large populations. Serologic assays for antibody detection aid patient diagnosis and seroepidemiologic investigations. METHODS: An indirect IgG ELISA was developed indigenously using ß-propiolactone (BPL) inactivated SARS-CoV-2. This assay was used for screening 200 healthy donor sera collected prior to COVID-19 emergence (2017-2019), 185 serum/plasma samples of confirmed COVID-19 patients (n = 137) and 57 samples of viral RNA positive asymptomatic contacts (n = 51). The IgG response was studied in relation to duration and severity of illness. RESULTS: The ELISA demonstrated 97 % specificity and IgG detection in >50 %, 80 %, 93.8 % and 100 % of the patients respectively during the first, second, third and fourth week of illness. IgG detection rate was higher in patients with severe disease (SD, 90.9 %) than those with mild disease (MD, 68.8 %) during the second week of illness (P = 0.027). IgG seropositivity among asymptomatic contacts was 64.7 %. IgG ELISA absorbance values were higher in SD than MD patients during the first 2 weeks of illness (P < 0.05). No significant difference was observed between the absorbance values of asymptomatic subjects and MD patients (P = 0.94). CONCLUSION: The BPL inactivated virus-based ELISA could detect IgG antibodies early and in a significant proportion of COVID-19 patients suggesting its potential utility as a supplement to the currently used viral RNA detection tests in patient diagnosis and contact screening algorithms.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , Propiolactone/pharmacology , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/pathology , Enzyme-Linked Immunosorbent Assay , Humans , Sensitivity and Specificity , Seroepidemiologic Studies , Virus Inactivation/drug effects
7.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-872505

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Subject(s)
Betacoronavirus/ultrastructure , Disinfectants/pharmacology , Propiolactone/pharmacology , Virion/drug effects , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology , Virion/ultrastructure
8.
Viruses ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: covidwho-548042

ABSTRACT

In late 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of the Chinese province Hubei. Since then, SARS-CoV-2 has been responsible for a worldwide pandemic resulting in over 4 million infections and over 250,000 deaths. The pandemic has instigated widespread research related to SARS-CoV-2 and the disease that it causes, COVID-19. Research into this new virus will be facilitated by the availability of clearly described and effective procedures that enable the propagation and quantification of infectious virus. As work with the virus is recommended to be performed at biosafety level 3, validated methods to effectively inactivate the virus to enable the safe study of RNA, DNA, and protein from infected cells are also needed. Here, we report methods used to grow SARS-CoV-2 in multiple cell lines and to measure virus infectivity by plaque assay using either agarose or microcrystalline cellulose as an overlay as well as a SARS-CoV-2 specific focus forming assay. We also demonstrate effective inactivation by TRIzol, 10% neutral buffered formalin, beta propiolactone, and heat.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Viral Plaque Assay/methods , Virus Inactivation , Animals , Betacoronavirus/drug effects , Betacoronavirus/growth & development , Betacoronavirus/pathogenicity , COVID-19 , Cellulose , Chlorocebus aethiops , Culture Media/chemistry , Formaldehyde , Guanidines/pharmacology , HEK293 Cells , Humans , Pandemics , Phenols/pharmacology , Propiolactone/pharmacology , SARS-CoV-2 , Sepharose , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL